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Density of primes

Let π(x) be the number of primes 6 x . Equivalently,
π(x) :=

∑
p6x 1.

Progress towards the following result:

Theorem (Prime Number Theorem)

π(x) ∼ x

log x

The log(·) is the natural logarithm.

Adrien-Marie Legendre conjectured in 1808
Independently proven by Jacques Hadamard and Charles Jean
de la Vallée-Poussin in 1896
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Infinitude of Primes

Theorem
There are infinitely many primes.

Proof 1:
Suppose not
Let P = {p1, . . . , pt} be the set of all primes
Consider the number n =

∏
i∈[t] pi + 1

It is not divisible by any number in P

Hence, contradiction

Something more is known:

Theorem (Dirichlet’s Theorem)

For a, d ∈ N and gcd(a, d) = 1, there are infinitely many primes
p ≡ a mod d
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Infinitude of Primes

Proof 2:
Suppose not and let p be the largest prime
Consider the number n = 2p − 1
If n is a prime then it is > p

If n is not a prime then consider a prime q|n
That is, n ≡ 0 mod q

Alternately, 2p ≡ 1 mod q

Consider the multiplicative group Z∗q
By Lagrange’s Theorem, p|q − 1
That is p < q
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Infinitude of Primes

Proof 3 (Lower Bounding π(x)):
Let n 6 x < n + 1
log x 6 1 + 1

2 +· · ·+ 1
n 6

∑
m∈N(n)

1
m , where N(n) is the set

of all natural numbers with all prime divisors 6 n

Right hand side is identical to∏
p6n

(
1 + 1

p + 1
p2 +· · ·

)
=
∏

p6n
1

1−p−1 =
∏

p6n
p

p−1

Let pk be the k-th prime
Note that t/(t − 1) is a decreasing function and pk > k + 1
So, pk

pk−1 6 k+1
k

Therefore,
∏

p6n
p

p−1 6 π(x) + 1
Overall, π(x) > log x − 1
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Chebyshev’s Estimates

Theorem (Chebyshev’s Estimates)

π(x) = Θ

(
x

log x

)
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Lower Bound

Let N =

(
2m
m

)
N is divisible only by prime number up to 2m
νp(N) be the maximum power of p in N

νp(N) =
∑

k>1
(⌊

2m/pk
⌋
− 2

⌊
m/pk

⌋)
Note that each term in the right hand side is either 0 or 1
For k > log(2m)/ log p the terms are 0
Therefore, νp(N) 6 log(2m)/ log p
Note that N =

∏
p62m pνp(N)

So, logN =
∑

p62m νp(N) log p 6
∑

p62m log(2m) =
π(2m) log(2m)

Rearranging, π(2m) > logN/ log(2m) >
log(22m/2m)/ log(2m) >

(1
2 log 2

)
(2m)
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Upper Bound

Let ϑ(x) :=
∑

p6x log p

Note
∏

m<p62m 6 N 6 22m

Therefore, ϑ(2m)− ϑ(m) 6 (2 log 2)m

For m = 2k , we have ϑ(2m) 6 (2 log 2)(2m)

Now, π(2m) =
∑

p62m 1 = π(
√

2m) +
∑√

2m<p62m 1 6√
2m + 2ϑ(2m)/ log(2m) 6

√
2m + (4 log 2)(2m/ log(2m))
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Prime Number Theorem

Theorem

π(x) ∼ x

log x

We know the following result: For x > 59, we have:

x

log x

(
1 +

1
2 log x

)
< π(x) <

x

log x

(
1 +

3
2 log x

)
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Bertrand’s Postulate

Theorem
For every n, there exists a prime number between p ∈ [n, 2n).

Implies π(x) > lg x
Prime number theorem implies this theorem
Prime number theorem implies large number of primes in the
range [n, 2n)

Prime number theorem implies: For every ε > 0, there exists
c, n0 such that for all n > n0 there are c x

log x primes in the
range [n, (1 + ε)n)
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Estimating π(x)

Logarithmic-integral function li(x) :=
∫ x
2

dt
log t

Error in estimation: |π(x)− li(x)|

Conjecture

|π(x)− li(x)| < x1/2 log x

Equivalent to Riemann hypothesis
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Riemann Hypothesis

Reimann’s zeta function:

ζ(s) :=
∞∑
n=1

1
ns

Theorem (Euler’s Identity)

For every real number s > 1, we have:

ζ(s) =
∏
p

(1− p−s)−1

Conjecture (Riemann Hypothesis)

For s ∈ C, if ζ(s) = 0 and Re(s) ∈ (0, 1), then Re(s) = 1/2
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