Lecture 02: Density of Primes

Density of primes

Let $\pi(x)$ be the number of primes $\leqslant x$. Equivalently,
$\pi(x):=\sum_{p \leqslant x} 1$.
Progress towards the following result:
Theorem (Prime Number Theorem)

$$
\pi(x) \sim \frac{x}{\log x}
$$

The $\log (\cdot)$ is the natural logarithm.

- Adrien-Marie Legendre conjectured in 1808
- Independently proven by Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896

Infinitude of Primes

Theorem

There are infinitely many primes.
Proof 1:

- Suppose not
- Let $P=\left\{p_{1}, \ldots, p_{t}\right\}$ be the set of all primes
- Consider the number $n=\prod_{i \in[t]} p_{i}+1$
- It is not divisible by any number in P
- Hence, contradiction

Something more is known:

Theorem (Dirichlet's Theorem)

For $a, d \in \mathbb{N}$ and $\operatorname{gcd}(a, d)=1$, there are infinitely many primes $p \equiv a \bmod d$

Proof 2:

- Suppose not and let p be the largest prime
- Consider the number $n=2^{p}-1$
- If n is a prime then it is $>p$
- If n is not a prime then consider a prime $q \mid n$
- That is, $n \equiv 0 \bmod q$
- Alternately, $2^{p} \equiv 1 \bmod q$
- Consider the multiplicative group \mathbb{Z}_{q}^{*}
- By Lagrange's Theorem, $p \mid q-1$
- That is $p<q$

Proof 3 (Lower Bounding $\pi(x)$):

- Let $n \leqslant x<n+1$
- $\log x \leqslant 1+\frac{1}{2}+\cdots+\frac{1}{n} \leqslant \sum_{m \in \mathbb{N}(n)} \frac{1}{m}$, where $\mathbb{N}(n)$ is the set of all natural numbers with all prime divisors $\leqslant n$
- Right hand side is identical to

$$
\prod_{p \leqslant n}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right)=\prod_{p \leqslant n} \frac{1}{1-p^{-1}}=\prod_{p \leqslant n} \frac{p}{p-1}
$$

- Let p_{k} be the k-th prime
- Note that $t /(t-1)$ is a decreasing function and $p_{k} \geqslant k+1$
- So, $\frac{p_{k}}{p_{k}-1} \leqslant \frac{k+1}{k}$
- Therefore, $\prod_{p \leqslant n} \frac{p}{p-1} \leqslant \pi(x)+1$
- Overall, $\pi(x) \geqslant \log x-1$

Chebyshev's Estimates

Theorem (Chebyshev's Estimates)

$$
\pi(x)=\Theta\left(\frac{x}{\log x}\right)
$$

Lower Bound

- Let $N=\binom{2 m}{m}$
- N is divisible only by prime number up to $2 m$
- $\nu_{p}(N)$ be the maximum power of p in N
- $\nu_{p}(N)=\sum_{k \geqslant 1}\left(\left\lfloor 2 m / p^{k}\right\rfloor-2\left\lfloor m / p^{k}\right\rfloor\right)$
- Note that each term in the right hand side is either 0 or 1
- For $k>\log (2 m) / \log p$ the terms are 0
- Therefore, $\nu_{p}(N) \leqslant \log (2 m) / \log p$
- Note that $N=\prod_{p \leqslant 2 m} p^{\nu_{p}(N)}$
- So, $\log N=\sum_{p \leqslant 2 m} \nu_{p}(N) \log p \leqslant \sum_{p \leqslant 2 m} \log (2 m)=$ $\pi(2 m) \log (2 m)$
- Rearranging, $\pi(2 m) \geqslant \log N / \log (2 m) \geqslant$ $\log \left(2^{2 m} / 2 m\right) / \log (2 m) \geqslant\left(\frac{1}{2} \log 2\right)(2 m)$

Upper Bound

- Let $\vartheta(x):=\sum_{p \leqslant x} \log p$
- Note $\prod_{m<p \leqslant 2 m} \leqslant N \leqslant 2^{2 m}$
- Therefore, $\vartheta(2 m)-\vartheta(m) \leqslant(2 \log 2) m$
- For $m=2^{k}$, we have $\vartheta(2 m) \leqslant(2 \log 2)(2 m)$
- Now, $\pi(2 m)=\sum_{p \leqslant 2 m} 1=\pi(\sqrt{2 m})+\sum_{\sqrt{2 m}<p \leqslant 2 m} 1 \leqslant$
$\sqrt{2 m}+2 \vartheta(2 m) / \log (2 m) \leqslant \sqrt{2 m}+(4 \log 2)(2 m / \log (2 m))$

Prime Number Theorem

Theorem

$$
\pi(x) \sim \frac{x}{\log x}
$$

- We know the following result: For $x \geqslant 59$, we have:

$$
\frac{x}{\log x}\left(1+\frac{1}{2 \log x}\right)<\pi(x)<\frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right)
$$

Theorem

For every n, there exists a prime number between $p \in[n, 2 n)$.

- Implies $\pi(x) \geqslant \lg x$
- Prime number theorem implies this theorem
- Prime number theorem implies large number of primes in the range $[n, 2 n$)
- Prime number theorem implies: For every $\varepsilon>0$, there exists c, n_{0} such that for all $n \geqslant n_{0}$ there are $c \frac{x}{\log x}$ primes in the range $[n,(1+\varepsilon) n)$

Estimating $\pi(x)$

- Logarithmic-integral function $\operatorname{li}(x):=\int_{2}^{x} \frac{d t}{\log t}$
- Error in estimation: $|\pi(x)-\operatorname{li}(x)|$

Conjecture

$$
|\pi(x)-\operatorname{li}(x)|<x^{1 / 2} \log x
$$

Equivalent to Riemann hypothesis

Riemann Hypothesis

Reimann's zeta function:

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Theorem (Euler's Identity)

For every real number $s>1$, we have:

$$
\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

Conjecture (Riemann Hypothesis)

For $s \in \mathbb{C}$, if $\zeta(s)=0$ and $\operatorname{Re}(s) \in(0,1)$, then $\operatorname{Re}(s)=1 / 2$

